
 

 

Problem 1: «So different friction» 

Part 1: Impossible friction. 

A dumb-bell made of two small massive spheres connected by a light rigid rod is held in vertical 

position so that the low (the lighter sphere) is on a horizontal rough surface. The masses of the 

spheres differ by the factor of 1.5. The dumb-bell is then carefully released and starts falling. 

There is no air drug. The low sphere begins to slide on the surface when the angle between the rod 

and the vertical becomes equal to 1 30   . Determine the coefficient of dry friction 1  between 

the low sphere and the surface. What must the friction coefficients ( 2  and 3 ) be in order for the 

sliding to begin at the angles between the rod and the vertical equal to 2 45    and 3 60   ?  

All answers must be up to hundredths.  Determine (in degrees, up to tenths) the largest possible 

angle of deflection from the vertical at which the low sphere can still start sliding (i.e. if the 

sphere did not start sliding before this angle had been reached, it would not slide until the upper 

sphere hit the surface).   

Part 2: Friction on kink 

Let us imagine an experiment when a small heavy puck is sliding downward a plastic chute from 

a height h with no initial velocity.  The chute consists of three parts: a straight incline, a straight 

horizontal, and a junction connecting smoothly the first two.    The junction is a cylindrical 

surface (see the Figure). The curvature radius of the surface is much less than h, much greater 

than the puck, and is independent of  . It turns out the puck remains at rest on the incline if 

с 30     . If the puck is released from some initial height h  and 60   , its braking distance 

on the horizontal part equals 102s = cm. Determine the braking distance of the puck released 

from the height 2h h   at 45   (the answer should be in centimeters). Estimate (in percent) 

the accuracy of the result if the curvature radius of the junction equals 7 cm. The coefficient of 

dry friction between the puck and the chute is assumed to be the same everywhere.  

 

 
 

Part 3: Crossing «by friction». 

A straight uniform log got stuck in a deep rocky crevice with parallel vertical walls and a width 

4d  m, the log is being held by friction.  One butt of the log is at the upper edge of the crevice, 

the other one is lower by 0,9h  m. The log lies in a vertical plane perpendicular to the crevice 

walls. The log mass equals 80m   kg. The friction coefficient between the log butts and the walls 

equals 0,9  . Consider two different situations.  

1) A tourist 1 whose mass (the backpack included) is 120M   kg, decided to cross the crevice by 

walking on the log.  When he had stand on the upper end of the log, it slipped downward just a 

bit but the log held on.  



 

 

2) A tourist 2, whose mass (the backpack included) is 120M   kg, decided to cross the crevice by 

another log with the same parameters. When she carefully descended the crevice edge and stepped 

on the lower end of the log, it slipped downward just a bit but the log held on.  

 
 

Let us assume that a log bend is negligible in both cases.  Which tourist will be able to reach the 

end of the log (write down 1 or 2 as an answer)? For the tourist who should have not walked the 

log, determine the distance x (from the wall where he/she started) at the moment the log starts 

falling in the crevice. As an answer, write down the formula that includes only the quantities 

given in the problem statement and the numerical value in meters, up to hundredths.  

In a more realistic model the log is allowed to bend. Consider the tourist crossing that was a 

success. Estimate the average radius of the log bend at the moment the tourist is precisely at the 

log midpoint (as an answer, write down the formula that includes only the quantities given in the 

problem statement and the numerical value in meters). How does the log bend affect the chances 

to fall (increases – 1, decreases – 2, does not affect – 0)? A wood density is 630   kg/m3, a 

Young modulus for log compression along the grain is 
1010E  Pa, the shear deformations are 

negligible, the log diameter is almost constant, and the free fall acceleration is 10g   m/s2. 



 

 

Proposed solution: 

 

1. Before the lower sphere starts sliding, the upper sphere follows a circle. The forces exerted on 

the upper sphere are the gravity force and the reaction force T by the rod. Let us write down the 

equation of motion for upper sphere in projection on the rod: 
2
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the mass of lighter sphere, v is a velocity of the lighter sphere, L is the rod length, and  is the 

angle between the rod and the vertical). According to the law of conservation of mechanical 

energy,  2 2 1 cosv gL   . 

 
Using these relations one can find the dependence of the rod reaction force and the inclination 

angle:  
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Forces being exerted on the lower sphere are: the gravity force, the rod reaction force, a normal 

force of reaction of the surface N, and a friction force Ffr. The condition of equilibrium of the 

lower sphere yields:  
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The friction force prevents the sphere from sliding until | |frF N  . Therefore, the angle at which 

the sliding starts and the friction coefficient are related as  
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Substitution of the given angles into this formula yields the coefficients 1 0,252  , 2 0,114  , 

and 3 1,039  . It should be noted though, that the value at 2 45    is impossible (it is less than 

at 1 30   )! Actually, for 0,114   the sliding starts at an angle less than 30° (at 11   ).  It is 

all about the non-monotonic nature of the obtained dependence ( )  . Introducing the function 
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Therefore, there are values of   which are «impossible» for any   and the angle 2 45    

belongs exactly to the domain of «impossible» values. Besides, we discovered that the maximum 

possible angle for the sliding to start is II
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: if the rod has tilted at 

this angle and the lower sphere did not start sliding, it will not slide until the upper sphere hits the 

surface.   
 

2. Obviously, the coefficient of friction between the puck and the chute equals c

1
tg

3
    . 

Let r  be the curvature radius of the junction. When the puck had slid down the incline, it gathered 

a speed 1v  determined by the law of conservation of mechanical energy:  
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The friction force on the incline is | | cosfrF mg   , and the work it has done is negative 
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obtain:  2

1 2 (1 cos ) (1 ctg ) 2 (1 ctg )v g h r gh         . When analyzing the puck motion 

on the junction it is convenient to introduce a new variable – an angular coordinate   counted 

from the beginning of the junction (this angle varies from 0 to  ). The puck does not stop, 

therefore the friction force is a kinetic friction and equations for the tangential and centripetal 

accelerations are ( N  is the normal reaction force of the chute): 
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(the angle between a tangent to the junction and the horizontal equals  ). A small increment 

of the angle   per a time increment dt  is 
v
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r

  , so 
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The terms discarded from the formulae for 
2

1v  and 
2

2v  are of the order of 2gr . Thus, discarding 

these terms contributes a relative error of the order of 0,024
r

h
 , i.e. about 3 %. 

 

3. Let us examine the conditions for both butts of the log to do not slip at the moment the tourist 1 

is at a distance x  from the «left» edge of the crevice.  Let us write down the conditions of the log 

equilibrium at this moment.  

 
Balancing horizontal components of the forces yields the condition of equality of the forces of 

normal reaction: 1 2N N N  . The balance of the vertical components of the forces means that 

the sum of the friction forces exerted on the log butts balances the sum of the gravity forces: 

1 2 ( )F F M m g   . Balancing the torques evaluated with respect to the upper end of the log 

gives the equation: 2 0
2

d
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   . The log butts do not slip if 1,2F N  . Thus, the log does 

not fall if the forces of normal reaction of the crevice walls balance the horizontal component of 

the log elastic force (due to log compression when being «pushed» in the crevice) satisfies:  
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On the diagram below one can see the region (shaded grey) of the values of N , for which the log 

does not slip, as a function of x . 

 



 

 

The value of N  corresponding to the first situation is determined by the condition that the upper 

log butt at 0x   «slipped down just a little bit» but held on.  Thus, 1F N   at 0x  , i.e. 
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. It is evident that for this value of the normal force a further increase of x  will 

inevitably violate the condition of not sliding at the lower end and this will happen when 
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 m. Thus, the tourist will 

fall into the crevice together with the log: if he dares to walk on it, he will even not reach the log 

midpoint!  

In the situation 2, the value of N  is determined by the condition 2F N   at x d , and 
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
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. Now, according to the diagram, the sliding does not begin at any x , so the 

tourist 2 will safely reach the opposite edge of the crevice.  

To estimate the average curvature radius of the log axis let us assume that this radius is much 

larger than the log length 2 2 4,1L d h    m and is constant at any point of the log. An 

equilibrium bend corresponds to the situation when the torque of elastic force balances the torque 

of external bending force in any log cross section.  As long as the log remains at rest the points 

where it touches the walls can be regarded as the log «fixed» points and attribute the log bend to 

the action of gravity force exerted on the log and the tourist.  To do an estimate, let us assume that 

the gravity force is applied to the log center, so the torque due to these forces with respect to a 

«fixed» point equals ( )
2

ex

d
M m g   . Let the log radius be r . Consider a cross section of the 

log which midline has bent with a curvature radius R  with its length maintained. The log layers 

closer to the center of curvature than this line will be compressed and those which are further will 

be stretched.  

 
Let us introduce a layer coordinate r z r     with respect to the midline (see the Figure).  The 

log element of a length dl  in the non-deformed state will have an angular size 
dl

d
R

  . 

Therefore, the deformation of this element in a layer of coordinate z  equals 
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torque in a given cross section is 2
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   . Thus, the total torque of elastic force is 
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the assumption L R  is good enough. However, it is clear that the bend is actually not uniform 

and the gravity force is distributed over the log, so our calculations are indeed just an estimate.  

The bend increases the length of the log axis (relative to the unloaded log), i.e. decreases its 

longitudinal deformation. Therefore, it decreases the force the compressed log exerts on the 

crevice walls and, accordingly, the normal reaction force of the walls. As it is clear from the 

diagram this increases the danger of falling (it turns out, quite essentially, so the second tourist 

should not walk the log as well).   

Note. An approximate calculation admits simplifications which do not significantly alter the 

result. For instance, the log can be replaced with a beam of square cross section of the same area 
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torque by replacing the continuously distributed elastic forces by a pair of «average» forces with 

an absolute value 
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arms equal to r . Then the torque 
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calculation! Other reasonable estimates are also possible.  



 

 

Problem 2: «To the Sun!» 

The spacecraft launched into a low circular orbit at an altitude of h = 300 km above the 

Earth’s surface had to perform two short-term acceleration maneuvers. As a result of these 

maneuvers the ship was supposed to be in a geostationary orbit (GSO) - this is a circular orbit 

lying in the plane of the Earth’s equator, in which the object is always above the same point on the 

Earth’s surface. 

The first maneuver was successfully accomplished and the ship reached an intermediate 

elliptical orbit with the maximum distance between the ship and the Earth’s center equal to the 

GSO radius while the minimum distance to the Earth’s center remained equal to the radius of the 

initial orbit.  

The second maneuver was designed so that the rocket engine would turn on only once and 

for a short time and use up one third of the fuel and oxidizer remained after the first maneuver. 

However, the engine did not start at the right moment. Although the technical crew was able to 

determine the cause of failure and regain control of the ship, the latter could not manage to get to 

the desired point at the GSO and its mission failed.  

Then they decided to try another maneuver: sending a part of the spacecraft from the 

intermediate orbit to an orbit heading to the Sun. Before this maneuver the ship had to be split in 

two parts in such a way that a part with the engine went to the Sun and the second (as 

unnecessary) part was left in space. It turned out, the orbit parameters allowed one to choose a 

moment for the engine to start so that the part sent to the Sun had the maximum possible mass. 

 The following facts are considered known. 

1. In polar coordinates the equation of motion of a body moving in the gravitational field of 

a massive spherical object is ( )
1 cos

p
  

   
 (the origin is placed at the object center). Here p 

is the orbit parameter and  is its eccentricity.  

2. The distance between Earth and the Sun varies between rA ≈ 152,1 Mkm (at aphelion 

passing in July) and rP ≈ 147,1 Mkm (at perihelion passing in January). The Solar radius equals 

RS =0,70 Mkm. The period of Earth revolution around the Sun is T0 ≈ 3,156·107 s. Both Earth and 

the Sun can be regarded as spherical bodies.   

3. The Earth’s radius is RE ≈ 6371 km. The duration of Earth’s day is 

T = 24 × 3600 с = 86400 s. The free fall acceleration at the Earth’s surface equals g ≈ 9,807 m/s2. 

Rotation of Earth and the Sun around their axes is in the same direction. The ship discussed in this 

problem was launched in the direction of Earth’s rotation as the majority of spacecraft.  

4. The exhaust velocity of combustion products from the engine nozzle is u = 6 km/s 

(relative to the ship). According to rocket equation, when rocket velocity increases by v  the 

rocket mass decreases from m  to 
uvemm / . 

 



 

 

 Please, answer the following questions. 

3) Calculate the parameter p and the eccentricity  of the intermediate orbit (write down the 

expressions for p and  in terms of the quantities given in the problem and compute their 

numerical values with at least 1% accuracy). How much does the absolute value of the ship 

total mechanical energy differ for the original circular orbit and the intermediate orbit? To 

answer this question, calculate the numerical value of the ratio 0 1/E E  (up to hundredths). To 

define potential energy of gravitational interaction between the ship and Earth use the standard 

assumption that the potential energy vanishes at infinite separation between them.  

4) Think at which short section of the intermediate orbit the engine should had been turned on to 

accomplish the originally planned maneuver of transition from the intermediate orbit to GSO 

(you are not required to answer this question). What velocity increment 2v  would be 

achieved as a result of the maneuver (in km/s, up to hundredths)?  What would the ship mass 

be after the maneuver (the answer should be given as the percentage of the original ship mass 

on the circular orbit with an accuracy of 1%).  

Note: when calculating the numerical values to answer the questions below, keep no less than four 

significant digits in the intermediate results.  

5) In which season (in the northern hemisphere) and at which approximate time of day should the 

engine be started in order to send the maximum (by mass) part of the ship to the Sun? An 

answer to this question must contain the season (winter / spring / summer / autumn) and the 

time of day (sunrise / noon / sunset / midnight). What is a required velocity Av  of the ship 

part heading toward the Sun in the Copernicus frame (in which the Sun is at rest) at the 

moment when the distance between the ship and Earth sufficiently exceeds RE and is much less 

than rA?  What is the velocity 2
~v  of this part of the ship relative to Earth right after the engine 

is turned off? Write down both velocities in km/s up to hundredths.  

6) What part of the ship mass (in percentage of its mass on the original circular orbit with an 

accuracy of 1%) should be detached as “unnecessary” in order to perform the maneuver? What 

is the mass (in percentage of the ship mass on the original circular orbit with an accuracy of 

1%) of the part that will arrive to the Sun?  

7) In what time after turning off the engine will the accelerated ship part reach the Sun? Write 

down the formula for the time in terms of the quantities given in the problem and calculate the 

numerical value (in Earth’s days, up to tenths).  

8) “Gravity assist maneuver” is a change of spacecraft velocity caused by its passing close to a 

very massive celestial object. Suppose we are going to perform such a maneuver near Venus. If 

a ship is set to an orbit which perihelion is close to the perihelion of Venus orbit and both the 

ship and Venus arrive to their perihelia simultaneously, the correct maneuver will send the ship 

passing close to Venus toward the Sun. Evaluate the maximum possible angle the ship velocity 

vector can be turned as a result of the gravity assist maneuver near Venus. The answer should 

be given in degrees with an accuracy of one degree. The distance between Venus and the Sun 

in perihelion equals 5,107Pr  Mkm, the velocity of Venus at the perihelion is 25,35PV  

km/s, and the first cosmic velocity (the velocity on the low circular orbit near the surface) is 

33,71 Vv  km/s. Venus can be regarded as a spherical body. Is it possible to deliver to the 



 

 

Sun a substantially greater part of the ship by using this maneuver rather than using the 

maneuver described in 3 and 4 (respond “yes” or “no”)?  



 

 

Problem 2 (proposed solution) 

1. Let us determine the radius of GSO and the ship velocity in this orbit ( r  and v , respectively). 

To do this we use the equation for the centripetal component of the ship acceleration in the GSO: 

2

2

2

2

r

mgR

r

mGM

r

v
m EE  , hence 

r

g
Rv E . On the other hand, the orbital period of the ship must 

be the same as the period of Earth’s rotation around its axis, i.e. T
v

r


2
, therefore 

42222
4

3
2

22




ERgT
r  km and 0705,3

2
3

2


T

Rg
v E

 km/s. According to the orbit equation, one 

has for the intermediate orbit 



1

p
hRE  and 




1

p
r . These equations yield: 

2 ( )
11522E

E

r R h
p

r R h


 

 
 km and 0,727E

E

r R h

r R h

 
  

 
. 

Below the symbols a and p stand for the quantities related to aphelion and perihelion of a ship 

orbit around Earth and symbols A and P relate to aphelion and perihelion of an orbit around the 

Sun. For an elliptical orbit of the ship both the total mechanical energy and angular momentum 

are conserved and can be expressed via the given distances from the Earth’s center to the aphelion 

and the perihelion. Therefore, E
r

mGMmv

r

mGMmv

p

Ep

a

Ea 
22

22

 and ppaa vrmvrm  . Solving 

these equations for velocities, one obtains 
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222
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a
Ep

rrr

r
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
  and 
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2
22
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Ea
rrr

r
gRv


 . This 

gives for the total mechanical energy: 
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E
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mgR
E


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. Using this result, one finds that 

1

0

1

0

)(2 m

m

hR

hRr

E

E

E

E




 , where 0m  and 1m  are the ship masses in the initial and the intermediate 

orbits.  

Since the radius of initial orbit equals the distance to the perihelion of intermediate orbit, the 

transition was performed by increasing the ship velocity from 7247,7
2

0 



hR

gR
v

E

E km/s to 

152,10
))((

2 2





hRrhR

rgR
v

EE

E
p km/s for a short period of time (according to the problem 

statement the maneuver was «short-term»). Therefore, it is reasonable to neglect both the 

curvature of ship trajectory and a gravity force and to consider the ship acceleration as being 

completely due to the engine thrust.  Hence, one can use the Tsiolkovsky rocket equation: 
uv

emm
/

01
1

 , where 4271,201  vvv p  km/s. Thus, 01 66730,0 mm   and 

49,5
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 uv

E

E e
hR

hRr

E

E
. Note that both energies are negative, i.e. actually 10 EE  .  



 

 

2. All ship orbits under consideration (with its engine turned off) near Earth are closed.  

Therefore, the short-term acceleration for the transition from the intermediate orbit into the GSO 

must be done immediately before the aphelion of intermediate orbit. To do this, it suffices to 

increase the ship velocity from av  at the aphelion to the velocity in the GSO (it is important that 

both at the aphelion of intermediate orbit and in the GSO the velocity is perpendicular to the 

radius). Note that 6040,1
)(

)(2 2







hRrr

hRgR
v

E

EE
a  km/s. Therefore, the velocity increment required 

to switch into the GSO must be 4665,12  avvv  km/s. Again, use the rocket equation: 

0
/)(

0
/

12 52260,0212 mememm
uvvuv


 . The mass increment

1 2 00,14470m m m    is 

the mass of the fuel and oxidizer which has to be consumed to switch into the GSO from the 

intermediate orbit. According to the problem, it was one third of the total supply. Hence, the mass 

of fuel and oxidizer in the intermediate orbit was 043410,0 mmF  . Since the ship mass in the 

intermediate orbit was 01 66730,0 mm  , the «useful» mass (the engine, the fuel tanks, and the 

hull) was equal to 023321,0 mmu  . 

3. In order to send the ship to the Sun it is necessary to reduce significantly the ship velocity with 

respect to the Sun. To do this in a most efficient way, the engine must be started when the ship is 

closest to the point where its velocity in the intermediate orbit is minimal with respect to the Sun. 

Obviously, it would be the best to choose the point at which the Earth’s velocity V with respect to 

the Sun is minimum (i.e. the aphelion of the Earth’s orbit) and the ship velocity relative to Earth is 

maximum and opposite to AV


. Therefore, the second maneuver must be performed when the ship 

approaches the perihelion of its orbit during the summer of the northern hemisphere, i.e. when 

Earth is at the aphelion, and at noon of the Earth’s time at the point below the ship. 

In order to reach the Sun, the ship after leaving Earth must follow an orbit around the Sun for 

which the distance to the aphelion is approximately equal to the distance to aphelion of the Earth’s 

orbit and the distance to perihelion is less or equal to the Solar radius. Then the ship velocity 

relative to the Sun after the it has receded from Earth to a distance sufficiently greater than the 

Earths’ radius (though much less than rA ≈ 152 Mkm) must not exceed 
)(

2

SAA

SS
A

Rrr

RGM
v


 .  

The Solar mass can be estimated by using the orbital period of Earth and the mean radius of the 

Earth’s orbit: 
2 3
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. Thus, the required velocity is 
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 km/s. The Earth’s velocity at the aphelion is 

0
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 
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
 km/s, so the ship velocity relative to Earth at the 

moment of its passage into the orbit leading to the Sun must be 26,4625A A Av V v     km/s. It is 

important to keep in mind the following. After turning off the engine, the ship must move 

somewhat faster than Av  to overcome the gravitational pull of receding Earth. This effect can be 



 

 

accounted for by means of the energy conservation law: the velocity 2
~v  of the part of the ship (of 

the mass 2m ) being sent to the Sun relative to the Earth’s center at the moment right after the 

engine was turned off is determined by the equation 

7267,282)(~

2
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2

~
2

2

2
2

2

2
22 


 EA

A
E gRvv

vm
gRm

vm
 km/s. 

4. During the maneuver of transition into the orbit leading to the Sun the increment of the ship 

velocity is 575,18~
22  pvvv  km/s. Before the acceleration the ship got rid of some of its 

mass ( m ), so the mass which will eventually reach the Sun is uv
emmm

/~

12
2)(~ 

 . To send 

the maximum mass to the Sun, the ship had to use up all the fuel and oxidizer supply, therefore 

2

2
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1 2 1 1 0/
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
. This 

calculation shows that the mass of the ship left after the second maneuver is 

2

2 2

/

2 0/ /
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v u v u

m m
m e m

e e



 
   

 
. Thus, no more than 2% of the ship mass in the initial 

orbit can be delivered to the Sun!  

5. According to the third Kepler’s law, a ratio of the squares of orbital periods equals to the cube 

of the ratio of the semi-major axes of the orbits. Therefore, the orbital period of the accelerated 

part of the ship in the new orbit is 3,1330
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sA  days. The trip to the Sun will take a 

half of this period, i.e. 7,66
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6. Detailed analysis of the gravity assisted maneuver requires a more general study of trajectories 

of a body moving in the gravitational field of a massive spherically uniform object. Let us again 

turn to the laws of conservation of mechanical energy and angular momentum.  A ship following 

the orbit ( )
1 cos

p
  

   
 has the total mechanical energy 

2 2 2 2( )

2 2

mv GMm m GMm
E const

r

  
    


 and the angular momentum 2L m const    , 

where the dot means differentiation with respect to time (the polar coordinates are employed). 

From the second relation one gets 
2

L

m
 


 and substituting into the first equation obtains: 
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. The distances to aphelion and perihelion, 

1
a

p
r 


 and 

1
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 
 , are 

the roots of the equation 0  . Therefore ( VM  is the Venus’s mass): 
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. 

When the part of the ship approaches Venus in the region of the orbits’ closing, in the Venus’s 

frame it comes to Venus from «a large distance» at non-zero velocity v , i.e. its total mechanical 

energy  0
2

2

 mv
E  and the orbit eccentricity 1  . In this case the orbit is hyperbolic, one can 

see that at 
1

arcsin
2

  
        

 the radius  . Thus, the velocity relative to Venus rotates at 

the angle 
1

2arcsin
 

   
 

. In this case, bvmL   where b  (see the Figure) is called the «impact 

parameter». 

 
One can see that the maximum rotation angle is achieved at the minimum eccentricity. According 

to the formula for eccentricity, 
2

42

)(
1

VGM

vb  , and the minimum value of the impact 

parameter is determined by the requirement that the distance between the orbit perihelion and the 

Venus’s center cannot be less than the planet radius VR : 
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rotation angle achieved during the flyby around Venus is 












22

1

2
1

max arcsin2
vv

v

V

V . The ship 

velocity relative to the Sun after the gravity assist maneuver is a vector sum of velocity 
v


 rotated 

by the angle   and the velocity V


 of the massive object relative to the 

Sun. Thus, the maximum angle max  the ship velocity vector can rotate 

toward the Sun during the maneuver can be found by means of the law of 

sines: sin sin
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Let us determine the velocity of the part of ship at the perihelion of its orbit: 
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 km/s (recall that the aphelion of the orbit leading from 

Earth to Venus coincides with the aphelion of the Earth’s orbit and the perihelion with the 

perihelion of the Venus’s orbit.). So, 2,7832P Pv v V
    km/s, 25,35 PVV  km/s, and 
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1
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v v

 
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 
. Therefore  4max . However, to hit the Sun at this velocity 

the angle rotation must be close to 90°. Thus, the gravity assisted maneuver near Venus cannot 

help in delivering a substantially larger ship mass to the Sun.  



 

 

Problem 3: «PLANETARY NEBULA» 

 

Planetary nebula is a cloud of gas bound by gravity of its «core» (typically a massive star). If the 

cloud is large enough we do not see the star itself because the light emitted by the star undergoes 

multiple scattering by the gas particles, is absorbed by them, and then reemitted. Thus, in our 

telescopes we observe only a shining nebula. In this problem you are suggested to study a relation 

between the nebula radiation seen by a distant observer and the original radiation of the core star. 

In reality such a nebula consists of many gases though hydrogen prevails. Therefore we consider a 

nebula composed only of atomic hydrogen with an average density of 
2010   g/cm3, an external 

radius of 
1710R   cm, and an internal radius of 

10

0 10r   cm (of course, it is equal to the radius of 

the core star). Here you can find physical constants which will be useful for solving this problem: 

speed of light in vacuum 
83 10c    m/s; 

elementary charge 
191,6 10e    C; 

electron mass
319 10em    kg; 

Planck constant 
34106,6 h  J·s; 

permittivity of free space 
12

0 1085,8   F/m; 

Avogadro constant 
23106 AN  mole–1; 

Boltzmann constant 
231,38 10k    J/K. 

The following integrals can be useful:  
3 4
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When 4b  the following approximations are valid:  
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Part I: Star radiation and gas temperature in the nebula.  

In spite of high brightness, a star can be quite accurately regarded as «blackbody», the term 

referring to an object absorbing almost all incident electromagnetic radiation. A hot blackbody 

emits electromagnetic radiation itself, its spectrum was first originally derived by M.Planck who 

introduced a postulate of quantization of radiation energy.  According to this postulate the 

electromagnetic radiation interacts with atoms and molecules as a stream of photons in which the 

energy of a photon is related to the wave frequency  as E h   . Planck proved that if a 

radiation with a frequency in a narrow range ( ,  )d     is in equilibrium with a blackbody at a 

constant temperature T  the energy density of the radiation equals ( )dW w d   , where 
3

3 /

8
( )

1h kT

h
w

c e 

 
 


 is the spectral density of the radiation aka the Planck distribution. The total 

intensity of the blackbody radiation (the energy radE  emitted from a unit area per a unit of time) 



 

 

is called the total energy flux and can be determined from the Stefan-Boltzmann law: 

4radE
J T

S t


  
 

. Here 
85,67 10    W/(m2·K4) is the Stefan-Boltzmann constant. 

 

Express the Stefan-Boltzmann constant in terms of the speed of light in vacuum c , the Planck 

constant h , and the Boltzmann constant k . 

Suppose that the whole gas cloud is in thermal equilibrium with the gas of photons emitted by the 

star. In this case, find the dependence of gas temperature on the distance r to the star center for 

0r r . Write down the answer as a ratio 
0

( )T r

T
, where 0T  is the temperature on the star 

surface.  

 

Part II: Hydrogen atom. 

Interaction of hydrogen atom and photons is described according to the Bohr model. Among the 

states of electron orbiting a nucleus there are stationary states, in such a state electron does not 

exchange energy with a radiation field. Absorption and emission of photons occurs during 

electron transition between stationary states. According to the Bohr model the energies of 

stationary «bound» states (electron energy levels in hydrogen atom) can be determined by 

employing «wave properties» of electron: the classical electron orbit corresponding to the 

stationary state  must contain an integer number of de Broglie wavelengths e

e

h

p
  , where ep  is 

the electron momentum.  All other energies of electron are completely forbidden: an electron with 

a «forbidden» energy will interact with the nucleus and pass into a stationary state by exchanging 

energy with another objects, e.g. by emitting a photon.  

 

Consider circular orbits of electron in hydrogen atom which contain 1,  2,  ...n   of de Broglie 

wavelengths and calculate the energy of n -th level (write down the equation as an answer; the 

potential energy of interaction of the electron and the nucleus tends to zero at infinity).  

What is the minimal energy of a photon which is able to ionize a hydrogen atom in the lowest 

energy state? This quantity is also called the ionization energy (threshold).  Write down the 

answer in electronvolts (eV). 1 eV is the unit of energy equal to the work done by electrostatic 

force by moving elementary charge between two points with potential difference of 1V.  

 

It is well known that the Bohr model describes quantum systems only approximately. However, 

for the energy levels of hydrogen it provides (by chance) the precise answer which can be proven 

in the framework of the modern quantum theory. This answer is in good agreement with 

experimental data. The state of the lowest energy ( 1n ) is called the ground state, and a state 

with 1n   is called the excited state. The lifetime of atom in an excited state (i.e. the time 

electron spends in the stationary state with 1n ) does not exceed 10–8 s. Then the electron passes 

into a stationary state with a lower energy and emits a photon. The transition to a neighboring 

energy level ( | | 1n  ) has the highest probability, transitions with 1|| n  are less probable.  

Suppose the hydrogen gas is in equilibrium with the radiation of a star which surface temperature 

is about T0 = 30 000 К. What is the most likely energy level (indicate its number) of hydrogen 



 

 

atoms at a distance 0r r  from the star? Estimate the fraction of atoms (in percent, rounded to 

an integer) in excited states at 
5

010r r .  

What is an approximate fraction of the star radiation energy flux consisting of photons with 

energies sufficient to ionize hydrogen atoms of the nebula if the temperature of the core star 

equals T0 = 30 000 K? The answer should be in percent.  

 

Part III. Radiation of nebula. 

Actually, even in a stationary nebula the hydrogen is not in equilibrium with the star radiation, it 

«reprocesses» the radiation. The main «reprocessing» mechanism is absorption of photons with an 

energy exceeding the ionization threshold.  As a result, the nebula has an admixture of free 

electrons and protons (ions H+). Proton-electron collisions result in formation of neutral hydrogen 

atoms although in excited states. The rate of electron-ion collisions per unit of time is proportional 

to the product of their densities. Usually such a collision produces a hydrogen atom with a large 

n   (an electron is seldom «captured» in a state with 1, 2n  ). Electrons from these states will 

pass in several «steps» to the ground state by emitting photons of the hydrogen spectrum.  

Obviously, the corresponding frequencies will be less than the frequency of the photon absorbed 

by atom during ionization. Similarly, a hydrogen atom can absorb photons and pass to an excited 

state (for this to happen the photon energy must be very close the energy difference of the 

corresponding states) and then gradually return to the ground state.   

Thus, the nebula absorbs a high energy photon and «converts» it into several photons of lower 

energies.  Note that the dispersion of photon frequencies emitted during the same transition is very 

small: for a typical planetary nebula it is less than a hundredth of percent of the transition 

frequency 
n n

n n

E E

h





  . For further notice that photons emitted during transitions from a level 

with 1n   to a level with 1n   are called «Lyman’s» (the corresponding spectral lines comprise 

the so-called Lyman series) and the photons emitted from a level with 2n   to a level with 2n   

are «Balmer’s»  (the corresponding spectral lines belong to the Balmer series). Photons with 

energies below the ionization threshold and not equal to an energy difference of two stationary 

states are usually elastically scattered by hydrogen atoms, their frequency almost does not change.  

 

Probability of ionization of hydrogen atom in the ground state by a photon with an energy 

exceeding the ionization threshold is specified by the photoionization cross section. This 

quantity has the dimension of area and is defined as a ratio of the number of photons absorbed 

by an atom per unit of time to the flux density of incoming photons (i.e. to the number of 

photons crossing a unit area of the wave front per unit of time).  Let this quantity be equal to 
1710i

   cm2 for the photons with energies near the ionization threshold.  Estimate the mean 

free path of a photon with an energy exceeding the ionization threshold (i.e. the distance it 

travels in the nebula before being absorbed) assuming that the hydrogen density equals the 

mean density  . Write down the answer in centimeters. 

What part of the photons emitted by the star with energies exceeding the ionization threshold of 

hydrogen (in the ground state) is going to be «reprocessed» by the nebula into photons of lower 

energies? Give the answer in percent rounded to an integer.  



 

 

Let N  be the number of photons with energies exceeding the ionization threshold of hydrogen 

(in the ground state) emitted by the star per a time  interval t , 21N  be the number of photons 

with frequencies corresponding to the transition ( 2) ( 1)n n    (the «main» line of the 

Lyman series) and leaving the nebula for the same time t , and BN  be the total number of 

the «Balmer» photons leaving the nebula for the same time t . Estimate the ratio 

21 : :BN N N   . 

An external observer studies the emission spectrum of the nebula being considered. Sketch the 

observed spectrum, i.e. plot the dependence ( )
dI

s
d

 


, where dI  is the detected radiation 

intensity per a unit frequency interval d .  Indicate the main features of the dependence.  

The observer found that the intensity of nebula radiation at the frequency of the main line of the 

Lyman series 21  is 10 % of the intensity of the nebula radiation in the frequency range 

21 21

2

3
      (the intensity of the main line in this range is not counted). What is the surface 

temperature xT  of the core star in the nebula? The first answer should be the equation for xT  (it 

must be an algebraic equation which does not contain other unknowns except xT ). The second 

answer should be the numerical value of xT  in Kelvin obtained by a numerical solution of this 

equation with an error not exceeding 500 K.  

 

Now one can see that hydrogen in the nebula is partially ionized. It is interesting to find out how 

the degree of ionization (the ratio of the number of ionized atoms to the total number of atoms) 

depends on the distance to the star surface. To simplify the analysis, you may use the model based 

on two assumptions valid in a region of noticeable ionization:  

9) a flux of photons with energies exceeding the hydrogen ionization threshold decreases mainly 

due to absorption of the photons by neutral atoms (rather than due to the increase of an area 

they spread over which);  

10) hydrogen density varies (with the distance) much slower that the ionization degree, so the 

density can be considered approximately equal to the average density of the nebula.  

Use also the information from the introduction to Part III.  

 

Suppose that the degree of hydrogen ionization near the star surface is very high and equals 99 %.  

Find the distance 1 1 0l r r   from the star surface where the degree of ionization becomes 90 % 

(the first answer is  1l ), 50 % (the second answer is 2l ), and 10 % (the third answer is 3l )?  

Write down all three values in cm. 



 

 

Proposed solution and answers  
 

1) The total density of radiation being in equilibrium with a surface of hot body is calculated by 

integrating over the whole spectrum: 
43 3 5 4 4

3 / 3 3 3

0 0

8 8 8

1 1 15h kT x

h h kT x k T
W d dx

c e c h e h c

 



    
    

  
  . Here the integral given in 

problem statement is used. To determine the energy flux being emitted by the surface note 

that «equilibrium» radiation propagates at the speed of light from every point uniformly in all 

directions. Therefore, any element of solid angle d  emits the energy flux of 
4

cW
dJ d 


. 

Let   be an angle counted from a surface normal. The outgoing radiation is emitted into the 

angular interval 0
2


   and an infinitesimal solid angle between conic surfaces with apex 

angles of   and d   equals 2 sind d     .  Then the total energy flux perpendicular to 

the surface is 

/ 2 5 4
4

2 3
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2
2 sin cos

4 4 15

cW cW k
J d T

c h




      
  . Comparing this equation with 

the Stefan-Boltzmann law one obtains: 
5 4

2 3

2

15

k

c h


  . 

2) In equilibrium nebula the energy flux emitted by the star is constant and equals to the flux 

from the star surface. If a gas layer at a distance 0r r  from the star were in thermal 

equilibrium with the radiation it would emit to «outside» the same flux as received from the 

«inside».    According to the Stefan-Boltzmann law the flux temperature would be determined 

by the equation: 
4 2 4 2

0 0( ) 4 4T r r T r       . Hence, 0

0

( ) rT r

T r
 . 

3) For a circular orbit the Bohr model requires 
2

( )
r

n n Z


 


, so 
2

e

h
r p m vr n   


. Writing 

down the classical equation of motion of electron in a circular orbit of a radius r at a velocity 

v, one obtains for hydrogen atom: 
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v
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. Therefore, the velocity and the radius of electron orbit are 

2 22
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 and the energy of electron in a stationary orbit is 
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. 

4) To ionize atom, its electron must be moved far away from the nucleus, where 0E  , i.e. to 

move the electron from the state with 1n   to a state with n  . Therefore, the ionization 

threshold of hydrogen atom is 
4

1 2 2

0

13,6
8

e
i

m e
E E

h
   


 eV. 



 

 

5) According to 2), the «equilibrium» gas temperature at  0
510 rr   turns out to be  

0
0( ) 95

r
T r T

r
   K. The energy of chaotic thermal motion of hydrogen atoms at this 

temperature is 012,0
2

3
kT  eV. The energy required to move electron to the lowest excited 

state (with n = 2) is 
4

21 2 1 2 2

0

3 3
10,2

32 4

e
i

m e
E E E E

h
     


 eV, i.e. a thousand times more! It 

should be obvious that a probability of transition to an excited state is very small, practically 

vanishing – evidently less than one percent! The contestants familiar with the Boltzmann 

distribution can evaluate this probability more precisely:  it is of the order of 
541/

1021 


kTE
e . That is, there would be practically no excited atoms at a given distance 

from the star.  

6) The photons able to ionize hydrogen atoms must have an energy of 13,6i ih h E     eV. 

For 300000 T  К this yields 
0 0

5,28i ih E

kT kT


    . The energy distribution of photons is 

given by the Planck distribution; therefore, the desired photon fraction is 

0
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w d w d

 



   
         

  
  . Using the information from the problem statement yields: 

3
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4 4
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( 1) 0,194 0,015

1x

x
dx e

e







      
   . A reasonable answer is  ~ 20 %. 

7) Density of hydrogen atoms at a mean mass density   is 
H

n
m


 , where Hm  is the mass of a 

single atom. This mass can be expressed via the Avogadro constant: 

obviously, 24107,1
g/mole1 

A

H
N

m g. Thus, 36 10n    см–3. To get an estimate one can 

assume that every atom creates a photon «trap» with a cross section i . Then the mean free 

path of a photon is determined by the requirement that these «traps» overlap the entire flux 

cross section: 
i

S
n S l  


, whence 

131
1,7 10

i

l
n

   


 cm. 

8) One can see that the nebula radius is about 6 thousand times greater than the «mean» free 

path of a photon. This means that practically all photons (all 100%, when rounded to an 

integer) with an energy exceeding the ionization threshold will be absorbed by the atoms and 

converted into photons of lower energies. (Note that according to 6), 
0

5, 28iE

kT
   , i.e. the 

ionization energy is higher than the maximum 02,84mE kT   of the photon energy 

distribution. So, as the energy of the photons grows, their contribution to the total flux rapidly 

decreases and the energy dependence of the ionization cross section could not significantly 

affect the result of the estimate.)  

9) According to 8), almost all photons with energies exceeding the ionization threshold are 

being absorbed by the nebula. Each of the absorbed photons triggers a chain of transitions. If 



 

 

the first transition occurred to the state 1n , then a photon of Lyman series was emitted, and 

this photon almost certainly would be absorbed by another hydrogen atom (the majority of 

hydrogen atoms of the nebula are in the ground state, i.e. the energy of a Lyman photon 

corresponds to an allowed transition for them and the mean free path is much less than the 

nebula radius). The atom that had absorbed this photon would return in the same excited 

state. This would continue until a transition to state with 1n   occurs.  If the first transition 

after the capture occurred in a state with 2n , then a Balmer series photon would be emitted 

which would be inevitably followed by emission of a photon of the main Lyman series with a 

frequency 21 . Balmer photons are practically not absorbed (since a fraction of hydrogen 

atoms in a state with  2n  is extremely low in the nebula) and leave the nebula after many 

elastic scattering events.  Photons of the main Lyman series are absorbed and reemitted many 

times before leaving the nebula as well. If the first transition occured to a level with 2n  the 

situation is «repeated»: there is again a «highly excited» state of atom which would follow a 

transition in the state 1n , or in a state with 2n , or in a state with 2n .  Therefore, 

every absorbed photon of high energy necessarily will «parent» a single Balmer photon and a 

single photon of the main Lyman series (plus several photons of other series of lesser 

energies). The contribution of Balmer photons and photons of the main Lyman series 

«originally» emitted by the star is very small due to a small width of the line and a finite 

density of thermal radiation. Thus, 1:1:1::21  NNN B . 

10) The spectrum of nebula radiation observed by an external observer is the spectrum of star 

radiation practically coinciding with the Planck spectrum corresponding to its temperature  

and «reprocessed» by the nebula.    According to 8 and 9, the thermal spectrum will be 

practically «cut» from above at the frequency i
i

E

h
 

 

due to the almost complete absorption 

of the photons with energies above the ionization threshold.   The energy emitted by this part 

of the spectrum is mostly transformed into the energy of photons of the main Lyman series 

(the energy of this photon is up to 75% of the energy of the «processed» photon), less energy 

goes to photons of Balmer series, and even less to low energy photons of other series.  

Therefore, the typical spectrum will have the approximate shape shown in the Figure.  

 
 

11) In the given frequency interval   there are no spectral lines of hydrogen (except for the 

Lyman line which contribution to the intensity is not counted), so the intensity in this 

frequency interval is determined by the «unprocessed» star radiation.  
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Here 212 79000 K

3 x x

h
z

kT T


  , and the numerical factor was written down by taking into account 

that the power radiated from a unit area is related to the spectral density as 
4

cW
J   (see 1).   Note 

that an accurate evaluation of the factor is not necessary since it cancels out anyway. The 

radiation intensity at the frequency 21  is determined by the condition that the number of photons 

with this frequency coming out of the nebula equals the number of photons with energies above 

the ionization threshold. Therefore,  
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This calculation takes into account that 21 21

0
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2 2

3 3
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z
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
        . According to the 

observer’s data, 
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. This is the equation for z , whence 

79000 K
xT

z
 . 

This equation has to be numerically solved by evaluating the values of 
2 / 2

3 / 2 3

1,5 (2 1)
( )

( 1) (1,5 1)

z

z

z z e
f z

z e z



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 for various z  and comparing with 0.1 (it would me more effective 

to use the method of dichotomy or, if available, to use Excel or a programmable calculator and 

simply look at the values of ( )f z  in the «expected» range):  

z f(z) 

3,7 0,1623462 

3,8 0,1437476 

3,9 0,1275049 

4,0 0,1132782 

4,1 0,1007847 

4,2 0,0897873 

4,3 0,0800860 

4,4 0,0715114 
 

One can see, the «appropriate» value is 4,1z  . Therefore, 19250xT   K. 

12) The equilibrium degree of ionization is achieved when the number of ionization events in a 

«thin layer» of gas per unit of time (equal to the number of absorbed photons with energies 

above the ionization threshold) equals the number of «captures» of electrons by protons 



 

 

(recombinations).   The flux of such photons decreases as the distance from the star increases 

not only because the surface area grows but also because of absorption: 
2 2 2
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accordance with the assumptions of the model used. Integration of this equation yields: 
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I r I n dr    . The number of photons absorbed per unit time is proportional to 

1 ( )in I r . The number of captures is proportional to the product of electron density en  and the 

density of hydrogen ions in  which are equal because the ionized layer remains neutral. Thus, 
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1 (1 )n y n  . According to the problem statement the ionization degree varies significantly 

faster than the concentration of atoms, so 
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is the mean free path of photons evaluated in 7. Taking the logarithm of this equation and 

differentiating the result, one obtains: 
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. Integrating the latter from the star surface to a given radius, one 

obtains: 0
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. Here 0 0,99y   is the given degree of 

ionization near the star surface. Using this formula, we find: 15

1 [90 2ln(11)] 1,6 10l l     cm, 

15

2 [98 2ln(99)] 1,8 10l l     cm, and 
15

3

890
2ln(891) 1,9 10

9
l l

 
    

 
 cm. One can see that 

the ionization degree becomes less than 1% at a distance of 152 10l    cm! That is, the degree 

of ionization remains very high at a distance of about ~1 % of the nebula radius (1015 cm), and 

drops almost to zero at a distance of ~2 %. Such a behavior confirms the assumption used in 

our model that the degree of ionization varies much faster than the area of the spherical surface 

grows and the density of the cloud decreases. Actually, it is pretty obvious that the 

concentration of atoms near the star is still higher than in the nebula periphery, so in the region 

with 15102 r  m the mean free path of photons is less than the «average» value used in our 

calculations. Therefore, in reality the region of high ionization is even stronger «pressed» 

against the star.    


